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ABSTRACT

SUPER-RESOLUTION VIA IMAGE RECAPTURE AND BAYESIAN

EFFECT MODELING

Neil Toronto

Department of Computer Science

Master of Science

The goal of super-resolution is to increase not only the size of an image, but also

its apparent resolution, making the result more plausible to human viewers. Many super-

resolution methods do well at modest magnification factors, but even the best suffer from

boundary and gradient artifacts at high magnification factors. This thesis presents Bayesian

edge inference (BEI), a novel method grounded in Bayesian inference that does not suffer

from these artifacts and remains competitive in published objective quality measures. BEI

works by modeling the image capture process explicitly, including any downsampling, and

modeling a fictional recapture process, which together allow principled control over blur.

Scene modeling requires noncausal modeling within a causal framework, and an intuitive

technique for that is given. Finally, BEI with trivial changes is shown to perform well on

two tasks outside of its original domain—CCD demosaicing and inpainting—suggesting

that the model generalizes well.
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Chapter 1

Introduction to Super-Resolution

In many image processing tasks, it is essential to get good estimates of between-

pixel values. Photographers and other content creators use interpolation both in hardware

and software to rescale images and parts of images. Good interpolation is vital in rotat-

ing and warping (visual effects or lens distortion correction, for example), where source

locations do not correspond one-to-one with pixel locations. It is also used in presenting

low-resolution signals on high-resolution displays, such as in up-converting a DVD signal

to HDTV, or in preparing an image for printing. This research is primarily concerned with

super-resolution: resizing a digital image to larger than its original size.

Interpolation methods may be split into two broad categories: nonadaptive and

adaptive.

1.1 Nonadaptive Methods

Nonadaptive methods are those that make no assumptions about how an image is created.

They are the most well-known and widely implemented. There are two significant families

of nonadaptive methods: function fitting methods and frequency domain methods.

1.1.1 Function Fitting Methods

Function fitting methods [1] fit basis functions to image samples either exactly, or inexactly

by goodness-of-fit criteria. They come in linear, quadratic, and many different cubic spline

varieties. Because image samples usually have a rectilinear grid structure, they are usually
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implemented as convolution with single, separable kernels. Image interpolation with these

methods is often followed by some kind of sharpening to reduce blurry artifacts.

1.1.2 Frequency Domain Methods

Frequency domain methods [2, 3] differ primarily in how they are motivated: an attempt to

approximate perfect reconstruction of a bandlimited signal. They are also implemented as

convolution. Because the ideal filter in the spatial domain (a sinc function) is a convolution

kernel of infinite width, finite approximations must be made, and much of the literature for

these methods deals with finding a filter that minimizes artifacts while approximating the

ideal filter well.

1.1.3 Qualitative Analysis

A comprehensive chronology of interpolation is given in [4], from as early as 300 B.C.

through 2001, but with special emphasis on the development of the two aforementioned

families.

The best of each of these families tend to produce results of comparable quality,

though some results indicate that B-spline interpolation, a function fitting method, is supe-

rior under certain reasonable criteria [3, 5]. For many real-world tasks such as image rota-

tion, one can almost always find a method that gives acceptable trade-offs between aliasing

and blurring while maintaining high accuracy. Room for improvement in this well-studied

area is limited.

However, super-resolution requires more than just perfect reconstruction to look

subjectively correct. Because upscaling widens the apparent point spread function, even

a resampled “perfectly reconstructed” natural image would appear to have blurry-looking

artifacts: fuzzy edges and too-smooth textures. Although natural images are bandlimited

due to the point spread of a capturing device, natural scenes are not.

2
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1.2 Adaptive Methods

Adaptive interpolation methods are those that use local context to preserve natural image

characteristics. They make strong assumptions about how images are produced and cap-

tured in an attempt to overcome the subjective incorrectness and finite limitations of perfect

reconstruction. These fall into three significant families: edge-preserving, training-based

and optimization methods.

1.2.1 Edge-Preserving

Many adaptive methods regard natural images primarily as projections of solid objects

with clear discontinuities, and thus attempt to preserve step edges in the upscaled result.

One of the earliest, subpixel edge localization, fits a rigid sigmoidal surface to overlapping

3×3 windows and averages surface values in the output image whenever a goodness-of-fit

threshold is met, falling back on bilinear interpolation [6, 7]. The authors of directional

interpolation [8], noting that subpixel edge localization can only handle step edges, fit a

planar model to small neighborhoods where a simple gradient and Laplacian test pass, and

also fall back on bilinear interpolation.

Edge-directed interpolation [9] seems to have popularized edge-preserving meth-

ods. Its basic interpolant is bilinear, but it detects edges using zero-crossings from the

output of a Laplacian-like filter and refuses to interpolate over them. It is one of the few

edge-preserving methods to incorporate a reconstruction constraint, which iteratively re-

duces the disparity between the low-resolution image and downsampled high-resolution

output. More recently, “new” edge-directed interpolation [10] takes a softer approach:

adapting interpolation based on estimated covariances from low-resolution neighborhoods.

Edge inference [11] is another soft approach, which models edges with neural network

regression over overlapping neighborhoods and combines network outputs with standard

nonadaptive interpolants.

3
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1.2.2 Training-Based

Training-based methods take a nonparametric approach, preferring instead to discover nat-

ural image characteristics or a transfer function from low-resolution to high-resolution from

a training set comprised of low-resolution and high-resolution pairs. These most often ad-

dress inventing plausible details.

Rather than trying to preserve edges alone, local correlation [12] and resolution

synthesis [13] try to discover features that should be preserved from a training set. Local

filters or kernels are learned and applied to each neighborhood of the low-resolution input

based on a clustering scheme. In [14], neural networks learn a transfer function from low-

resolution patches to high-resolution patches; training also incorporates a differentiable

measure of perceptual quality.

Other methods focus on inventing, or “hallucinating” plausible high-frequency de-

tail. Freeman’s work [15, 16] is similar in structure to the model presented in this thesis.

In it, a training set both represents the distribution of images and serves as primitives for

reconstruction. The scene is modeled as a Markov random field: a grid of indexes into

the training set, with soft constraints ensuring that nearby primitives are compatible. Low-

resolution primitives are constrained to be compatible with low-resolution input neighbor-

hoods. A MAP estimate finds a best match, and high-resolution primitives are selected for

the final output. All data is bandpass-filtered and contrast-normalized to focus inference

and generalize the training set. The work is extended later to incorporate priors based on

the characteristic distribution of natural images’ directional derivatives and to demosaic

CCD output [17]. While the details are good, this method often fails to infer plausibly

smooth object boundaries.

The image analogies algorithm [18], when used for super-resolution, is very similar

to Freeman’s, but eschews probabilistic modeling in favor of straight matching to train-

ing set instances based on reasonable measures of local similarity and compatibility with

neighbors. Baker motivates a “recogstruction” method [19] by noting that all methods that

4
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incorporate smoothness priors on the output image produce overly smooth results at some

magnification factor no matter how many input images are available, and instead chooses a

prior calculated from training set data. The training data is also used to hallucinate details

for faces and text.

Face hallucination [20] takes a two-step approach to face super-resolution: first, a

global linear model learns a transfer function from low-resolution faces to high-resolution

faces, then a Markov network locally reconstructs high-frequency content. A fully

Bayesian approach to text super-resolution [21] models generation of binary textual glyphs

with an explicit noise model and represents likelihood functions nonparametrically with

grayscale, antialiased training instances.

Finally, texture synthesis methods [22, 23, 24] (and also the image analogies in [18])

create novel textures from training data. This is related in that super-resolution, at least the

problem of inventing plausible details, can be regarded as guided or semi-supervised texture

synthesis.

1.2.3 Optimization

Optimization methods assume that an original high-resolution image existed and was de-

graded by a known process to produce the input image. They are either motivated or

formulated explicitly in Bayesian terms. A regularizing prior is chosen for the high-

resolution output, a transition function (often called a reconstruction constraint [19], back-

projection [25] or sensor model [26]) is chosen to represent degradation, and inference is

performed by finding a MAP estimate. This is very similar to many of the training-based

methods; the difference is that here, the random variable to be estimated is usually the

high-resolution output itself rather than a higher-level representation of it.

Level-set-based reconstruction [27] uses a regularizing prior that promotes correct

level-set topology while penalizing jagged artifacts. A sharpening model is added in [28],

and in [29] it is extended to automatically select regularization parameters and to handle

5
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other forms of image manipulation besides super-resolution. In data-dependent triangula-

tion [30] the problem is cast as finding the optimal triangulation of the image surface, where

the regularization constraint is one that minimizes jagged artifacts. Another recent local ge-

ometry approach, inspired by the natural distribution of directional derivatives mentioned

above, puts a prior distribution on gradient profiles [31], which is learned from a training

set.

1.2.4 Qualitative Analysis

While most papers on adaptive super-resolution methods compare against nonadaptive

methods and a few compare against other adaptive methods, the most comprehensive qual-

itative analysis to date is Ouwerkerk’s recent survey [32], which compares some methods

mentioned here. The survey includes a discussion of general techniques and presentation

of methods to be tested. A set of test images was downscaled and then restored, and for

each method tested, three objective measures were applied to pairs of original and restored

images.

While many methods performed well at 2x magnification factors, all showed ar-

tifacts by 4x. The best methods had issues with boundary coherency and false edges in

gradients at those scales. A primary goal of this research is to surpass those methods in

subjective quality with respect to those artifacts, while remaining competitive on objective

measures.

1.3 Bayesian Edge Inference

The method presented here, Bayesian edge inference (BEI), has many similarities to all

three families of adaptive methods, but also significant differences.

Edge-preserving methods tend to model step edges directly, and so does BEI—but

BEI models them as scene primitives rather than as image primitives. This is a subtle

but important difference: it allows reasoning about blur due to downsampling as part of a

6
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capture process. Further, to obtain a result, BEI uses image recapture, a fictional higher-

resolution capture process, rather than simply evaluating a function.

Training-based methods tend to model the scene using primitives and recreate an

image from high-resolution versions of the same. The main differences here are that BEI

is parametric rather than training-based, and that it formally and explicitly models image

recapture. Again, this allows reasoning about blur due to downsampling. BEI also shares

the notion of compatibility among scene elements that some training-based methods use.

Optimization methods and BEI are both built on Bayesian inference. Because reg-

ularization is conceptually equivalent to compatibility, BEI shares this concept with op-

timization methods as well. Yet rather than infer a new image, BEI infers a scene and

recaptures it. MAP estimates are used almost exclusively in optimization methods, but BEI

samples a posterior predictive density.

In Bayesian inference, the better a model represents the true process that produced

the data, the better it can infer the causes. Thus, another primary goal of this research

is to model image capture and recapture more explicitly than has been previously done.

Besides increasing accuracy, explicit modeling exposes assumptions and approximations,

and allows greater control over outcome.

Explicit modeling also poses a problem. Capture is a causal process, which

Bayesian models express naturally. However, compatibility is not: it models the effects

of unknown causes, which Bayesian models generally cannot express. A technique for

incorporating effect models in Bayesian models is necessary, which this research also con-

tributes.

7
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Chapter 2

Graphical Models

2.1 Introduction

Stochastic processes are processes with output or behavior characterized by probability

distributions. “Graphical models” is the somewhat unfortunate name given to a class of

modeling techniques that use graphs (in the nodes-and-edges sense) to represent stochastic

processes.

There are at least two good reasons that graphical models are fitting candidates for

modeling image reconstruction tasks. First, image capture is in part a physical process that

involves optical and quantum properties that can be modeled by probability distributions,

such as the trajectory of a light wave as it passes through a lens and the proportion of

photons that are localized and detected by a CCD element. (These are often modeled by

point-spread functions (PSFs) and white noise, respectively.) Second, it is often necessary

to model the scene that generated an image. The scene is not completely unknown, only

uncertain, and we can characterize our beliefs about scenes using probability distributions.

2.1.1 Notation and Terminology

This chapter assumes some knowledge of probability, including the terms random variable,

probability mass, probability density, joint distribution, and conditional distribution.

Random variables are in capital letters; lowercase letters denote their values (such

as samples, observations and integration variables). Bold letters denote a collection of some

kind, such as vectors, arrays or sets, as in Z = {Z1, Z2, Z3}, z = {z1, z2, z3} and z ∈ Z.
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Subscripting, such as Xi and xi, denotes indexing into these collections. Specified density

and mass functions are subscripted with their random variable, as in fX(x|y). A bare p,

such as p(y|x), denotes a derived density or mass function. As always, P(X) is thoroughly

abused as a stand-in for a probability density, mass or query as the occasion requires.

2.2 Bayesian Networks

Bayesian networks [33] are often used to model generative stochastic processes: those that

can be readily modeled as a noisy function, or as a function whose true nature is uncertain.

They are often called generative, causal or conditional models. The basic modeling unit

is the random variable: an entity that represents a set of events that might happen and

the probabilities with which they will. These probabilities are expressed as conditional

distributions. It is important to note that in Bayesian modeling, a probability distribution

can represent belief as well as frequency of occurrence.

After a causal process is modeled it may be sampled or simulated: executed top-

down like a program, replacing random variables with samples from their conditional dis-

tributions. The result is a sample from the joint distribution of all random variables in the

model.

Each random variable may be optionally observed, or given a fixed value, which

alters the distribution of the remaining variables. Reasoning about this altered model is

performing inference. Inference is generally most useful when modeling the process in

reverse would be difficult; hence process outputs are usually observed, and likely inputs or

future outputs are recovered.

The process most immediately relevant to this thesis is image capture. Here a device

such as a digital camera records proportions of photons localized on a CCD array, which

can be modeled as a generative process. An image (the output) is observed, and a scene

(the likely input) is recovered. From this, a new image can be generated as if it had been

produced by a higher-resolution device.

10
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(a) A directed acyclic graph (DAG)
that represents the decomposition
P(X1) P(X2|X1) P(X3|X1, X2).

(b) Independence is asserted by leav-
ing edges out. This graph represents
P(X1) P(X2) P(X3|X1, X2).

Figure 2.1: Bayesian networks represent joint distributions decomposed into conditional distribu-
tions via the chain rule. Both of these represent P(X1, X2, X3).

2.2.1 Formulation

The basic structure of a Bayesian network, the directed acyclic graph (DAG), is due to

decomposition according to the chain rule:

P(X1, X2, ..., Xn) = P(X1) P(X2|X1) P(X3|X1, X2) ... P(Xn|X1, X2, ..., Xn−1) (2.1)

This may be performed with variables in any order.

Any decomposition of n variables can be represented as a fully connected DAG,

and every fully connected DAG uniquely represents a decomposition. To create the DAG,

first create a node for each random variable. Then for each conditional distribution, add an

arrow in the DAG from each variable on the right side pointing to the variable on the left.

See Figure 2.2(a) for a demonstration with n = 3. The arrow is read “generates”, “causes”

or “is conditioned on” as in “X1 generates X2”, “X1 causes X2” or “X2 is conditioned on

X1”. The direction of the arrows favors and emphasizes the first two readings.

Specifying all the conditional distributions is more work than specifying the joint

distribution. Simplification comes from the notion of independence, which means that the

value of a random variable has no direct effect on the distribution of another. That is, if X1

and X2 are independent, then

P(X2|X1) = P(X2) (2.2)

11
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Thus, as in Figure 2.2(b), the arrow from X1 to X2 is left out, and the distribution of X2

is specified more simply. Any number of direct dependencies may be removed. Every

possible DAG may be generated this way; thus, every DAG represents a decomposition

that may include independence.

Modeling with Bayesian networks consists of 1) picking a topology that represents

the forward process, which involves making independence assumptions; and 2) assigning

conditional distributions.

Much of the appeal of Bayesian networks comes from their close relationship to the

chain rule. Important laws of probability, such as independence, Bayes’ Law, and the mul-

tiplication rule (the inverse of the chain rule) can be understood as graph transformations.

Important properties of a stochastic model, such as direct and indirect dependence, can be

found by inspecting the DAG.

Another desirable property is that unnormalized complete conditionals are easy to

compute. These are the density or mass functions of each random variable given that every

other in the model has been observed:

p(xi|x{−i}) ∝ fXi
(xi|xpar(i))

∏
j∈ch(i)

fXj
(xj|xpar(j)) (2.3)

where x{−i} represents the values of all random variables except for that of Xi, fXi
is the

conditional density or mass function of Xi, par(i) yields the parents of Xi (the variables

that generate it), and ch(i) yields the children of Xi (the variables it generates). This can

be read “the probability of xi given its parents times the probabilities of the children of

xi given their parents”. The variables referred to are often called the Markov blanket of

xi. Note that the complete conditional is comprised only of distributions specified during

modeling.

Computing complete conditionals is central to the primary tools currently used for

approximate inference.

12
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2.2.2 Inference

Forward processes are usually modeled in order to run them in reverse; that is, to assert that

an outcome has been observed and recover the likely inputs. (The process can optionally be

run forward using the recovered inputs to obtain likely future outputs.) Considering image

reconstruction sheds some light on the reason for this. Human experience tells us some-

thing about how scenes are composed. Optical physics and engineering embody knowledge

about how scenes cause images—how they are projected and captured. However, what it

means for an image to cause a scene, or for an image to cause a reconstructed image, is less

than clear. It makes more sense to model known processes and do inference than to try to

model unknown, reverse processes.

Inference is generally concerned with deriving or computing a conditional distri-

bution from the model. Let X = {X1, X2, ..., Xn} and Y = {Y1, Y2, ..., Ym} be sets of

random variables such that X generates Y. (In reconstruction, X is the scene and Y is the

image.) If Y is observed, the distribution of most interest for X becomes its distribution

conditioned on Y, which is given by Bayes’ Law:

P(X|Y) =
P(X) P(Y|X)

P(Y)

=
P(X) P(Y|X)∫

x∈X P(X = x) P(Y|X = x) dx

(2.4)

This may be the reason for the name “Bayesian networks”. Notice that the right-hand side

of the law is comprised of distributions that have been specified during modeling. Recov-

ering inputs X from outputs Y is equivalent to deriving X|Y from known distributions X

and Y|X, and from observations of Y.

Special cases have analytic solutions for the integral in the denominator; they are

said to be conjugate. Most do not, so we turn to approximate inference.

Often, all that is required is the mode, or maximum a posteriori (MAP) value of

X|Y. In this case, inspecting Equation 2.4 makes the solution clear. The denominator

13
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is a constant, so finding the value of X that maximizes the numerator is equivalent to

finding the value of X that maximizes the entire fraction. Hill-climbing algorithms are

certainly capable. Stochastic relaxation is often used. In this technique, samplers used to

approximate distributions of X|Y are modified to have a temperature term that increases

concentration of probability near the modes on a schedule [34].

In other cases, the actual distribution of X|Y is required. Approximate inference

algorithms almost always yield samples from this distribution because samples have con-

venient properties. For example, approximate expected values, such as utilities, means

and variances, can be computed using summation. “Integrating out” a random variable to

get marginal distributions is done by simply not including it in the sample vector. Higher

accuracy can always be obtained by sampling more.

One of the most effective approximate inference algorithms is the Gibbs sampler. It

works on a surprising principle: under certain common conditions, sampling from each un-

observed random variable’s complete conditional in turn yields samples from X|Y. When a

complete conditional is not conjugate, which is the common case, it may be sampled using

a Markov chain sampler called Metropolis-Hastings. The combination of these samplers is

called Markov chain Monte Carlo (MCMC).

2.3 Markov Random Fields

Sometimes the forward stochastic process is either unknown or too difficult to model. This

is often the case in image reconstruction, where a complete causal model would contain the

entire three-dimensional scene or an approximation of it. In such cases, it is better to model

effects rather than causes. For example, while it is difficult to model object boundaries that

cause edge primitives, it is relatively easy to model the fact that edge primitives tend to line

up with neighbors.

Markov random fields (MRFs) [35] represent processes that are often called agen-

erative or noncausal. The basic modeling unit is still the random variable, but relationships

14
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(a) A simple Markov random field with
two cliques: {X1, X2, X3} (indicated) and
{X1, X3, X4}. These have associated clique
potentials Φ1(x1, x2, x3) and Φ2(x1, x3, x4).

(b) A Markov random field with four-
connected neighborhoods. This topology is
used often in image reconstruction.

Figure 2.2: Examples of Markov random fields.

are specified using clique potentials rather than conditional distributions. Sampling or sim-

ulating the process cannot be done top-down, but generally must be done by samplers used

for approximate inference. Observation works in the same way as in Bayesian networks,

and reasoning about a model with observations is likewise called inference.

2.3.1 Formulation

An undirected graph may be viewed as a set of nodes and a set of cliques (maximal fully

connected subgraphs). Each node in an MRF represents a random variable, and each clique

has an associated clique potential that describes the interaction of its members. Let X =

{X1, X2, ..., Xn} be the set of random variables, and Φ = {Φ1,Φ2, ...,Φm} be the set of

clique potentials. Let x be instances of X, with x{i}, i ∈ 1..m denoting an indexed subset.

Each Φj is a mapping from clique values x{j} to R+. Note that there is no requirement that

clique potentials sum to one. Figure 2.3(a) shows a simple MRF with four nodes and two

cliques.

Define the potential as

Φ(x) ≡
m∏
j=1

Φj(x{j}) (2.5)
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The joint density or mass is the normalized potential

p(x) ≡ Φ(x)∫
x′∈X Φ(x′) dx′

(2.6)

Normalization is almost never necessary in practice.

Certain topologies are popular in image reconstruction: grids of four-connected

neighborhoods, shown in Figure 2.3(b), and less commonly, grids of eight-connected

neighborhoods.

While the relationship between probability laws and MRFs is not so close as be-

tween probability laws and Bayesian networks, direct and indirect dependence can still be

found by inspecting the graph. The other desirable property of Bayesian networks, that

unnormalized complete conditionals are easy to compute, holds for MRFs. It is the product

of the potentials of every clique that a random variable participates in:

p(xi|x{−i}) ∝
∏
j∈cl(i)

Φj(x{j}) (2.7)

where cl(i) returns the indexes of cliques that Xi belongs to.

2.3.2 Inference

As in Bayesian networks, inference is concerned with deriving or computing a conditional

distribution from the model, given some observed variables. Also as before, few cases

have analytic solutions. Again we turn to approximate inference, and find that both MAP

estimates and samples from the posterior distribution can be computed using exactly the

same algorithms.
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Figure 2.3: Two factor graphs and the equivalent Markov random field topology. Shaded boxes
represent factors, or relationships among connected variables. By being formulated in terms of
clique potentials, MRFs hide important information.

2.4 Factor Graphs

Factor graphs [36] are a general way of representing functions of multiple variables that can

be factored into a product of “local” functions. Bayesian networks whose distributions are

specified as mass or density functions, and all MRFs, can be represented as factor graphs.

The formulation is almost identical to that of MRFs. Let x = {x1, x2, ..., xn} be

the set of variables, and f = {f1, f2, ..., fm} be the set of factors. Each fj is a mapping

from x{j} ⊆ x to R. The main differences are that factors do not have to be associated with

cliques, and they range over the entire real line (which is restricted to R+ for stochastic

models). The product of factors represents a function,

f(x) ≡
m∏
j=1

fj(x{j}) (2.8)

Because factor graphs were developed without probability in mind, normalization is not

part of their definition.

Even without a probabilistic pedigree, factor graphs may be a better choice for

noncausal modeling than MRFs. Figure 2.3 shows two factor graphs and the result of

converting each of them into an MRF. Though the factor graphs’ direct dependencies are

different, inspecting the MRF gives no hint of such, since all factors were multiplied into

the same clique potential.
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Though factor graphs are more expressive, MRFs have more mindshare in com-

puter vision and image processing. Part of this is simply due to social momentum. Also,

though MRFs are defined in terms of maximal cliques, they are often specified in terms of

subcliques. In this case, the only difference between MRFs and factor graphs—as used in

stochastic modeling—is implied normalization (rarely carried out) and graphical represen-

tation.
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Chapter 3

Super-Resolution via Recapture and Bayesian Effect Modeling

An earlier version of this chapter was accepted for publication at the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition 2009.

3.1 Introduction

Many image processing tasks, such as scaling, rotating and warping, require good estimates

of between-pixel values. Though this research may be applied to interpolation in any task,

we restrict our attention to single-frame super-resolution, which we define as scaling a

digital image to larger than its original size.

While recent methods give excellent results at moderate scaling factors [32], all

show significant artifacts by scaling factors of 4x (Figure 3.1). We contribute a novel

method grounded in Bayesian inference that preserves high-quality edges in a manner ag-

nostic to scale. Central to this is an image reconstruction framework adapted from super-

vised machine learning. Certain aspects of BEI require modeling unknown causes with

known effects, which we show can be incorporated fairly easily into an otherwise causal

model.

The simplest existing super-resolution methods are nonadaptive, which make the

fewest assumptions and are the easiest to implement. Function fitting methods regard

the image as samples from a continuous function and fit basis functions to approximate

it [1]. Frequency-domain methods regard the image as a sample of a bandlimited signal
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2x

4x

(a) Local Correlation (LCSR)

2x

4x

(b) Resolution Synthesis (RS)

2x

4x

(c) Bayesian edge inference (BEI)

Figure 3.1: Comparison of three super-resolution methods on a region of “Peppers” at factors of
2x and 4x. Insets are subregions magnified an additional 2x using bilinear interpolation for display
only. LCSR [12] (a) and RS [13] (b) are arguably the best published methods, as measured in [32].
Note that artifacts are almost entirely absent in 2x but show up clearly in 4x, namely steps in steep
gradient areas (upper inset) and boundary incoherence (lower inset). BEI (c) does not exhibit these
artifacts even at 4x.

and attempt perfect reconstruction [2, 3]. All of these suffer from blockiness or blurring at

moderate magnification factors. The reason is simple: the scene itself is not bandlimited.

Adaptive methods make strong assumptions about scenes in general to obtain more

plausible results. Parametric methods attempt to preserve strong edges by fitting edges [6,

9] or adapting basis functions [10, 37]. Nonparametric methods discover features that

should be preserved using training images [12, 13] or use training images both as samples

from the distribution of all images and as primitives for reconstruction [17, 18].

Ouwerkerk recently surveyed adaptive methods [32] and applied objective mea-

sures to their outputs on test images at 2x and 4x magnification factors. Methods that give

excellent results on 2x super-resolution tend to show artifacts at higher factors. For exam-
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Figure 3.2: The recapture framework applied to super-resolution. The original low-resolution image
is assumed to have been generated by a capture process operating on an unobserved scene. Inference
recovers the scene, which is used to capture a new image.

ple, Figure 3.1 shows the results of applying the two methods found to be best to a region

of “Peppers”. Artifacts that are nearly absent at 2x become noticeable at 4x, namely steps

in gradient areas and boundary incoherence. Because artifacts show up so well at those

scales, our research focuses on factors of 4x or more.

Optimization methods [27, 30, 31] formulate desirable characteristics of images as

penalties or priors and combine this with a reconstruction constraint to obtain an objec-

tive function. The reconstruction constraint ensures that the result, when downsampled,

matches the input image. Though BEI is similar in many respects, it does not model

downsampling of a high-resolution image, but models image capture of a detailed scene

and recapture with a fictional, higher-resolution process (Figure 3.2). For this we adapt a

Bayesian framework from supervised machine learning [38].

For scale-invariance we model a projection of the scene as a piecewise continuous

function, much like a facet model [39]. To address blur analytically, we construct it such
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that it approximates the continuous blurring of step edges with a spatially varying PSF. We

address stepping in gradients by carefully modeling minimum blur.

Outside of modeling the scene hierarchically, some notion of compatibility among

scene primitives [17, 18] is required to ensure that object boundaries are coherent. We

show that Markov random field compatibility functions can be incorporated into Bayesian

networks in a way that is direct, intuitive, and preserves independence relationships, and

then incorporate compatibility into our model.

3.2 Reconstruction by Recapture

Optimization methods apply to reconstruction tasks in general. These assume that an orig-

inal image I′ existed, which was degraded to produce I. They are either motivated or

formulated explicitly in Bayesian terms, in two parts. First is a prior on I′, which encodes

knowledge about images such as gradient profiles [31] or isophote curvature [27]. The

second part is often called a reconstruction constraint [19], back-projection [25] or sensor

model [26]: a conditional distribution I|I′ that favors instances of I′ that, when degraded,

match I. The result is usually found by maximizing the joint probability P(I|I′)P(I′) to

obtain the most probable I′|I. Figure 3.4(a) shows the framework as a simple Bayesian

network.

Consider two related tasks that have been addressed in the optimization framework.

First is a super-resolution task: scaling up a full-resolution digital photo for printing. Sec-

ond is CCD demosaicing: a consumer-grade camera filtered light before detecting it with

a single-chip sensor. Two-thirds of the color data is missing and must be inferred. These

tasks violate assumptions made by optimization methods. There was no pristine original

image that was degraded, and the only thing that can possibly be reconstructed is the scene.

In these cases and many others, the true objective is to produce a novel image of the same

scene as if it had been captured using a better process.
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(a) Optimization framework (b) Recapture framework

Figure 3.3: Bayesian frameworks for image reconstruction. Shaded nodes are observed. Optimiza-
tion methods (a) model an assumed high-resolution original I′ generating the input image I. This
requires prior knowledge about I′ and a degradation process I|I′. The proposed framework (b) mod-
els capture and recapture rather than (or including) degradation. This requires a rich scene model S
and capture process models I|C,S and I′|C′,S.

Based on this objective, we propose the more general recapture framework shown

in Figure 3.4(b). Here, a process (e.g. a camera) with parameters C is assumed to have

captured the scene S as the original image I. This process may include degradation. A

fictional process (e.g. a better camera) with parameters C′ recaptures the same scene as the

result I′. As in optimization methods, I is observed and inference recovers I′, but through

S rather than directly. This requires a scene model rich enough to reconstruct an image.

There is also a practical advantage to recapture. With the right scene model, if only

recapture parameters are changed, the result can be rerendered at interactive speeds.

3.3 Effect Modeling in Bayesian Networks

Our super-resolution method models the scene using overlapping primitives, which must

be kept locally coherent. This has been done using ad-hoc compatibility [18] and Markov

random field (MRF) clique potentials [17]. However, converting recapture models to MRFs

would hide independence relationships and the notion of causality—and image capture is

obviously causal in nature. Graphical models rarely mix causal and noncausal dependence.

Chain graphs do [40] but are less well-known and more complex than Bayesian networks

and MRFs.

23



www.manaraa.com

It is worth noting that MRFs are not used in reconstruction to model noncausal

dependence for its own sake, but to model unknown causes that have known effects on an

image or scene, which are usually symmetric. This is appropriate when inferring causes is

cumbersome or intractable.

Fortunately, modeling unknown causes with known effects in a Bayesian network

is fairly simple (Figure 3.4). In the interest of saving space, we note without giving details

that motivation for the following comes from the conversion of MRFs to factor graphs to

Bayesian networks [41]. Let X = {X1, X2, ..., Xn} be the set of random variables in a

Bayesian network, and Φ = {Φ1,Φ2, ...,Φm} be a set of functions that specify an effect

(such as compatibility). Let x be instances of X, with x{i}, i ∈ 1..m denoting an indexed

subset. Each Φi is a mapping from x{i} to R+. For each Φi, add to the network a new

real-valued observed variable Zi with density fZi
such that

fZi
(zi = 0|x{i}) = Φi(x{i}) (3.1)

Because Zi is real-valued, fZi
does not have to be normalized. Because it will remain

observed, its density does not have to be specified except at 0. (There are uncountably

infinite candidates for fZi
; we will assume one of them.) Adding this new observed variable

cannot create cycles or introduce unwanted first-order dependence.

Inference may proceed on joint density p′(x):

p′(x) ≡ p(x|z = 0) =
p(x)p(z = 0|x)

p(z = 0)
∝ p(x)p(z = 0|x) = p(x)

m∏
i=1

Φi(x{i}) (3.2)

For Gibbs sampling [34], Markov blanket conditionals are

p′(xj|x{−j}) ≡ p(xj|x{−j}, z = 0) ∝ fXj
(xj|xpar(j))

∏
k∈ch(X,j)

fXk
(xk|xpar(k))

∏
i∈ch(Z,j)

Φi(x{i}) (3.3)
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Figure 3.4: Bayesian effect modeling. X1 and X2 share an unknown cause with known effect Φ1.
This is modeled as an observed node in the network. An equivalent network exists in which X1 and
X2 are directly dependent and the joint distribution X1, X2 is symmetric if Φ1 is symmetric and
X1 ∼ X2.

where par(j) yields the indexes of the parents of Xj and ch(A, j) yields the indexes of the

children of Xj within A.

3.4 Super-Resolution Model

The steps to using the recapture framework for reconstruction are: 1) define the scene

model, expressing knowledge about the scene or scenes in general as priors; 2) define the

capture and recapture processes; and 3) observe I and report I′. Because the objective is

to generate an image as if it had been captured by a fictional process, the proper report is

a sample from (rather than say, a MAP estimate of) the posterior predictive distribution

I′|I. This may be done by running a sampler such as Gibbs or MCMC on S|I, followed by

sampling I′|S once.

Definitions. An image I, which is an m × n array of RGB triples normalized to [0, 1],

is observed. A real-valued scaling factor s is selected and an bsmc × bsnc image I′ is

reconstructed through anm×n scene model S. Coordinates of triples, which are parameters
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of the capture process, are

Cx
i,j ≡ i+ 1

2
i ∈ 0..m− 1

Cy
i,j ≡ j + 1

2
j ∈ 0..n− 1

(3.4)

where i, j are image indexes.

The scene and capture models use the following to convert an integer- or real-valued

coordinate to the set of its nine nearest neighbors:

N9(x, y) ≡ {i ∈ Z | − 1 ≤ i− bxc ≤ 1}

×{j ∈ Z | − 1 ≤ j − byc ≤ 1}
(3.5)

For clarity we omit here treatment of image borders.

The model uses an approximating quadratic B-spline kernel [42] to weight facet

outputs, which we denote as wq.

3.4.1 Facets

S is similar to a facet model [39] in that it uses overlapping geometric primitives to rep-

resent a continuous function. It differs in these fundamental ways: 1) facets are blurred

step edges, not polynomials; 2) it represents a scene rather than an image; 3) the combined

output of the primitives is fit to the data through a capture model; and 4) facets are made

compatible with neighbors where they overlap.

The assumption that the most important places to model well are object boundaries

determines the shape of the facets. Each is based on an implicit line:

dist(x, y, θ, d) ≡ x cos θ + y sin θ − d (3.6)

To approximate blurring with a spatially varying PSF, we assign each facet a Gaussian

PSF and convolve each analytically before combining outputs. For simplicity, PSFs are
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(a) A region of “Monarch,” reduced
2x and reconstructed.

(b) The inferred PSF standard devi-
ation Sσ . Darker is narrower.

Figure 3.5: BEI’s spatially varying PSF. It has correctly inferred a wider PSF for the flower petals,
which are blurry due to shallow depth-of-field. These are still blurry in the final output.

symmetric and only vary in standard deviation. The usefulness of a spatially varying PSF

is shown in Figure 3.5.

Convolving a discontinuity with a Gaussian kernel gives the profile of the step edge:

prof(d, σ, v+, v−) ≡ v+

∫ ∞
0

G(d− t, σ) dt+ v−
∫ 0

−∞
G(d− t, σ) dt

= v+−v−
2

erf
(

d√
2σ

)
+ v++v−

2

(3.7)

where erf is the error function and v+ and v− are intensities on the positive and negative

sides of the edge. Because of the PSFs’ radial symmetry, a facet can be defined in terms of

its profile:

edge(x, y, θ, d, v+, v−, σ) ≡ prof(dist(x, y, θ, d), σ, v+, v−) (3.8)

An example step edge is shown in Figure 3.6.
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Figure 3.6: Scene facets are blurred step edges, or linear discontinuities convolved with blurring
kernels. This has θ = −π

4 , d = 0 as the line parameters and a Gaussian kernel with σ = 1
3 .

3.4.2 Scene Model

The scene model random variables are a tuple of m × n arrays sufficient to parameterize

an array of facets:

S ≡ (Sθ,Sd,Sv
+

,Sv
−
,Sσ) (3.9)

We regard the scene as an array of facet functions. Let

Sedge
i,j (x, y) ≡ edge(x−Cx

i,j, y −Cy
i,j,S

θ
i,j,S

d
i,j,S

v+

i,j ,S
v−

i,j ,S
σ
i,j) (3.10)

be an array of facet functions centered at Cx,Cy and parameterized on the variables in S.

A generalization of weighted facet output, weighted expected scene value, is also

useful:

E[h(Sx,y)] ≡
∑

k,l∈N9(x,y)

wq(x−Cx
k,l, y −Cy

k,l) h(Sedge
k,l (x, y)) (3.11)

When h(x) = x, this is simply weighted output. Weighted scene variance will be defined

later using h(x) = x2.

Priors. It seems reasonable to believe that, for each facet considered alone,

1. No geometry is more likely than any other.

2. No intensity is more likely than any other.

3. There are proportionally few strong edges [17].
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(a) Two samples from the prior predictive I′ (i.e. no data).

(b) Two samples from the posterior predictive I′|I (i.e. with data).

Figure 3.7: The utility of compatibility. The right images include compatibility. The samples
without data (a) show that it biases the prior toward contiguous regions. The samples with data (b)
show that it makes coherent boundaries more probable.

The priors are chosen to represent those beliefs:

Sθi,j∼Uniform(−π, π) Sv
+

i,j∼Uniform(0, 1)

Sdi,j∼Uniform(−3, 3) Sv
−
i,j∼Uniform(0, 1)

Sσi,j∼Beta(1.6, 1)

(3.12)

Compatibility. It seems reasonable to believe that scenes are comprised mostly of regions

of similar color, and that neighboring edges tend to line up. We claim that both can be

represented by giving high probability to low variance in facet output. (Figure 3.7 demon-
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strates that this is the case.) Recalling that E[S2
i,j]− E[Si,j]

2 = Var[Si,j], define

Φi,j(SN9(i,j)) ≡ exp

(
−Var[Si,j]

2γ2

)
(3.13)

as the compatibility of the neighborhood centered at i, j, where γ is a standard-deviation-

like parameter that controls the relative strength of compatibility. At values near ω (defined

in the capture model as standard deviation of the assumed white noise), compatibility tends

to favor very smooth boundaries at the expense of detail. We use γ = 3ω = 0.015, which

is relatively weak.

In image processing, compatibility is usually defined in terms of pairwise poten-

tials. We found it more difficult to control its strength relative to the capture model that

way, and more difficult to reason about weighting. Weighting seems important, as it gives

consistently better results than not weighting. This may be because weighted compatibility

has a measure of freedom from the pixel grid.

3.4.3 Capture and Recapture

The capture and recapture processes assume uniform white noise approximated by a narrow

Normal distribution centered at the weighted output value:

Ii,j|SN9(i,j) ∼ Normal(E[Si,j], ω) (3.14)

where i, j are real-valued coordinates and ω is the standard deviation of the assumed white

noise. We use ω = 0.005.

Recapture differs from capture in treatment of Sσ (defined in the following section)

and in using a bilinear kernel to combine facet outputs. The bilinear kernel gives better

results, possibly because it makes up for blur inadvertently introduced by the quadratic

kernel wq.
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3.4.4 Minimum Blur

To make the recaptured image look sharp, we assume the original capture process had a

minimum PSF width Cσ and give the recapture process a narrower minimum PSF width

Cσ ′. Because variance sums over convolution of blurring kernels, these are accounted for

in the capture model by adding variances. That is, rather than computing Sedge using Sσ,

I|S uses

Sσk,l
∗ ≡

√
(Sσk,l)

2 + (Cσ)2 (3.15)

The value of Cσ depends on the actual capture process. For recapture, we have found that

Cσ ′ ≡ Cσ/s tends to give plausible results. (Recall that s is the scaling factor.)

3.4.5 Decimation Blur

In [32], as is commonly done, images were downsampled by decimation: convolving with

a 2×2 uniform kernel followed by nearest-neighbor sampling. When decimation blur has

taken place, regardless of how many times, the capture process can model it as a constant

minimum PSF.

With image coordinates relative to I, decimation is approximable as application of

ever-shrinking uniform kernels. The last kernel was one unit wide, the kernel previous to

that was a half unit wide, and so on. Let uw be a uniform kernel with width w. Assuming

no upper bound on the number of decimations, the upper bound on variance is

u ≡ u1 ∗ u 1
2
∗ u 1

4
∗ u 1

8
∗ u 1

16
∗ · · ·

Var[u] = Var[u1] + Var[u 1
2
] + Var[u 1

4
] + · · ·

=
∑∞

n=0

(1/2)2n

12
= 1

12

(
4
3

)
= 1

9

(3.16)

The series converges so quickly that Cσ = 1
3

is a fairly good estimate for any number of

decimations.
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3.4.6 Inference

The Markov blanket for Si,j includes its nine children in I and Φ, and their nine parents

each in S.

Only the time to convergence seems to be affected by choice of initial values. We

use the following:

Sθ = tan−1((OI)y/(OI)x) Sd = 0

Sv
+

= Sv
−

= I Sσ = 1
2

(3.17)

In this model, posterior density in S is so concentrated near the modes that samples

of S after convergence are virtually indistinguishable. Therefore we find a MAP estimate

of S|I and sample I′|S to approximate sampling I′|I.

Gibbs with stochastic relaxation [34] finds a MAP estimate quickly, but a deter-

ministic variant of it is faster. It proceeds as Gibbs sampling, except that for each random

variable X , it evaluates the Markov blanket conditional at x, x+σX and x−σX , and keeps

the argmax value.

Tuning σX online results in fast convergence. Every iteration, it is set to an ex-

ponential moving standard deviation of the values seen so far. This is computed by

tracking an exponential moving mean and moving squared mean separately and using

Var[X] = E[X2]− E[X]2. Let

σ2
Xi

= vXi
−m2

Xi

mX0 = x0 mXi
= α mXi−1

+ (1− α) xi

vX0 = x2
0 + σ2

X0
vXi

= α vXi−1
+ (1− α) x2

i

(3.18)

where σX0 is the initial standard deviation. The value of α denotes how much weight is

given to previous values. Using σX0 = 0.05 for all X and α = 0.5, we found acceptable

convergence within 100 iterations on all test images.
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3.5 Results

Ouwerkerk [32] chose three objective measures that tend to indicate subjective success

better than mean squared error, and gave results for nine single-frame super-resolution

methods on seven test images chosen for representative diversity. The original images

were decimated once or twice, reconstructed using each method, and compared. Therefore

we set minimum blur Cσ = 1
3

as derived in Section 3.4.5.

Figure 3.8 shows that BEI keeps boundaries coherent even in difficult neighbor-

hoods because of compatibility. Note the boundaries of the narrow black veins, which are

especially easy to get wrong. Figure 3.9 is a comparison of some methods with BEI on

a region of “Lena,” which shows that BEI preserves gradients and sharpens edges. Note

gradients on the nose and on the shadow on the forehead, and the crisp boundaries of the

shoulder and brim of the hat.

Table 3.1 gives measures for BEI in 4x super-resolution along with linear interpo-

lation for a baseline and the top two, resolution synthesis (RS) [13] and local correlation

(LCSR) [12], for comparison.

Unfortunately, a bug in computing ESMSE was not caught before publication

of [32], making this measure suspect [43]. Further, it is questionable whether it mea-

sures edge stability, as the edge detector used falsely reports smooth, contiguous regions

as edges. Therefore, Table 3.1 includes a corrected ESMSE measure using the same edge

detector with its minimum threshold raised from 10% to 20%.

We give numeric results for a noiseless recapture process because the objective

measures are somewhat sensitive to small amounts of noise. In practice, though, a little

noise usually increases plausibility.
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(a) Nearest-neighbor (b) BEI

(c) RS (d) LCSR

Figure 3.8: A difficult region of “Monarch”. Most 3×3 neighborhoods within the black veins
include part of the boundary on each side. While RS and LCSR have done well at avoiding artifacts
here (much better than the others compared in [32]), BEI eliminates them almost entirely because
of compatibility.

3.6 Other Applications

One advantage to Bayesian inference is that missing data is easy to deal with: simply do

not include it.

In CCD demosaicing [17], a Bayer filter, which is a checkerboard-like pattern of

red, green, and blue, is assumed overlayed on the capture device’s CCD array [44]. It could

be said that the filtered two-thirds is missing data. We implemented this easily in BEI by

not computing densities at missing values. The result of simulating a Bayer filter is shown

in Figure 3.10. We also found it helpful to change the prior on Sσ to Uniform(0, 1) and set

minimum blur to zero.
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PSNR, higher is better MSSIM, higher is better
Image Bilinear RS LCSR BEI Bilinear RS LCSR BEI
Graphic 17.94 20.19 19.55 20.87 0.775 0.864 0.854 0.898
Lena 27.86 29.57 29.08 29.60 0.778 0.821 0.810 0.820
Mandrill 20.40 20.71 20.63 20.67 0.459 0.536 0.522 0.519
Monarch 23.91 26.41 25.90 26.65 0.848 0.896 0.889 0.902
Peppers 25.31 26.26 25.66 26.27 0.838 0.873 0.864 0.876
Sail 23.54 24.63 24.31 24.55 0.586 0.679 0.657 0.663
Tulips 25.43 28.19 27.56 28.44 0.779 0.843 0.831 0.847

ESMSE, lower is better ESMSE fixed, 20% thresh.
Image Bilinear RS LCSR BEI Bilinear RS LCSR BEI
Graphic 3.309 2.998 3.098 2.151 5.871 3.760 4.027 3.571
Lena 5.480 4.718 4.706 4.786 5.212 4.472 4.547 4.556
Mandrill 6.609 6.301 6.278 6.393 6.333 6.097 6.075 6.213
Monarch 5.448 4.518 4.606 4.547 5.260 4.177 4.445 4.214
Peppers 5.531 4.905 4.864 4.889 5.448 5.061 5.061 5.043
Sail 6.211 5.776 5.808 5.893 6.025 5.305 5.418 5.447
Tulips 5.994 5.198 5.286 5.161 5.679 4.569 4.769 4.549

Table 3.1: Comparison of bilinear, BEI, and the top two methods from [32], using objective mea-
sures from the same, on 4x magnification. PSNR = 10 log10(s2/MSE), where s is the maximum
image value and MSE is the mean squared error. MSSIM is the mean of a measure of local neigh-
borhoods that includes mean, variance, and correlation statistics. ESMSE is the average squared
difference in maximum number of sequential edges as found by a Canny edge detector with in-
creasing blur. See the text for an explanation of “ESMSE fixed”.

Inpainting can also be regarded as a missing data problem. By not computing den-

sities in defaced regions, BEI returned the image shown in Figure 3.11. Again we flattened

the prior on Sσ and set minimum blur to zero. We also set the initial values to the rather

blurry output of a simple diffusion-based inpainting algorithm [45], which tends to speed

convergence without changing the result.

Super-resolution can be regarded as a missing data problem where the missing data

is off the pixel grid. In fact, there is nothing specific to super-resolution in BEI’s scene

or capture model at all. Bayesian inference recovers the most probable scene given the

scene model, capture process model, and whatever data is available. In this regard, super-

resolution, CCD demosaicing, and inpainting are not just related, but are nearly identical.
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(a) Original (b) Nearest-neighbor (c) Bilinear

(d) NEDI [10] (e) LCSR (f) RS

(g) BEI (h) BEI 8x

Figure 3.9: A 256×256 region of “Lena” (a) decimated twice and magnified 4x (b – g). Note the
gradient steps in (e) and (f), especially in steep gradients such as on the nose and in the shadow
on the forehead. Because BEI can model decimation blur explicitly in the capture and recapture
processes, it preserves these gradients at 4x (g) and 8x (h) while keeping boundaries sharp.

3.7 Limitations and Future Work

BEI is computationally inefficient. Though inference is linear in image size, computing

Markov blanket log densities for 9mn random variables is fairly time-consuming. Our
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(a) Cubic interpolation (b) BEI, flat Sσ priors, Cσ = 0

Figure 3.10: CCD demosaicing with a simulated Bayer filter. BEI, which was changed only trivially
for this, treats it naturally as a missing data problem. Note the sharp edges and lack of ghosting.

(a) Defaced 33% (b) BEI, flat Sσ priors, Cσ = 0

Figure 3.11: Inpainting with BEI. As with CCD demosaicing, this requires only trivial changes to
the model. Bayesian inference has recovered the most probable scene given the available data.

highly vectorized Python + NumPy implementation takes about 5 minutes on a 2.4GHz In-

tel CPU for 128×128 images. However, there is interpreter overhead, vectorization means

BEI scales well in parallel, and nearly quadratic speedup could be gained by taking NEDI’s

hybrid approach [10], which restricts inference to detected edges.

Almost all single-frame super-resolution methods tend to yield overly smooth re-

sults. Sharp edges and relative lack of detail combine to create an effect like the uncanny

valley [46]. BEI, which does well on object boundaries and gradients, could be combined

with methods that invent details like Tappen and Freeman’s MRFs [17]. Good objective

measures for such methods could be difficult to find. Many are confused by small amounts

of noise, and would likely be even more confused by false but plausible details.
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Ouwerkerk observed [32] that most methods could benefit from a line model, and

we have observed that T-junctions are another good candidate.

Related to CCD demosaicing is undoing bad CCD demosaicing in images captured

by devices that do not allow access to raw data. This may be as simple as modeling the

naı̈ve demosaicing algorithm in the capture process.

Because Bayesian models are composable, any sufficiently rich causal model can

model the scene. If not rich enough, it can be used as a scene prior. For example, pa-

rameterized shape functions that return oriented discontinuities or functions from region

classifications to expected gradients and values can directly condition priors on S. Even

compatibility functions can be conditioned on these.
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Chapter 4

Conclusion

This research is concerned with single-frame super-resolution: increasing the ap-

parent resolution of a digital image. It focuses in particular on magnification factors of

4x and higher, because while the best existing methods give excellent results at moderate

scaling factors, they suffer from artifacts by 4x. The two types of artifacts addressed in this

research are stepping in steep gradients and boundary incoherence.

The practical result of this research is Bayesian edge inference (BEI), which has

been shown to adequately address both of these issues while remaining competitive with

the best existing methods on objective correctness measures, and surpassing them in many

cases.

BEI is built on a Bayesian recapture framework, in which a scene rather than an

image is reconstructed, and then recaptured using a better, fictional process. Capture and

recapture processes are explicitly modeled in this framework, which allows BEI to model

downsampling blur differently in each. This has been shown to sharpen edges in the result

while preserving gradients.

Also critical to BEI’s success is easy modeling of unknown causes with known

effects in Bayesian networks. This allows a prior on scenes that favors both regions of

similar color and coherent object boundaries. Without modeling effects, the prior would be

highly cumbersome to specify or even make inference intractible.
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Effect modeling has been presented as a technique only. In research with broader

scope it should be presented as a graphical model in its own right, defined by its transfor-

mation into Bayesian networks, with its own set of properties, strengths, and weaknesses.

Finally, BEI with only trivial changes has been shown to have good subjective per-

formance on tasks related to super-resolution: CCD demosaicing and inpainting. Bayesian

modeling excels at missing data problems, and all three may be regarded as such. This

indicates that BEI and its governing framework should generalize well to even more types

of reconstruction tasks.
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